Machine Learning und Deep Learning mit Design Thinking

Kostenfrei für Dich

durch Förderung

Bei Machine Learning wird künstliches Wissen aus Erfahrung generiert. Der Kurs erläutert dir zudem die Methoden des Deep Learnings auf Basis von neuronalen Netzen. Auch stellt der Kurs mit Design Thinking einen Ansatz zum Lösen von Problemen und zur Entwicklung neuer Ideen vor.
  • Abschlussart: Zertifikat „Design Thinking“
    Zertifikat „Machine Learning“
    Zertifikat „Deep Learning“
  • Abschlussprüfung: Praxisbezogene Projektarbeiten mit Abschlusspräsentationen
  • Unterrichtszeiten: Vollzeit
    Montag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
  • Dauer: 9 Wochen

Design Thinking

Einführung in Design Thinking (ca. 1 Tag)

Design Thinking Prozess im Überblick

Die wichtigsten Regeln und Phasen des Design Thinking

Praxisorientierte Ansätze und Anwendungen


5 Phasen im realen Projekt (ca. 3 Tage)


Research Phase

Methodischer Input zu qualitativem Research

Umsetzung durch praktische Übungen am realen Projekt


Synthese Phase

Methodischer Input zu Analyse und Synthese

Umsetzung durch praktische Übung am realen Projekt


Ideation Phase

Methodischer Input zu Kreativtechniken und Ideenentwicklung

Umsetzung durch praktische Übung am realen Projekt


Prototyping Phase

Methodischer Input zu Visualisierung und Protoyping (u. a. Mockups, Click Dummys, 3D-Printing und Rapid Prototyping)

Umsetzung durch praktische Übung am realen Projekt


Testing Phase

Methodischer Input zu Testmethoden und Iteration, agiles Vorgehen

Umsetzung durch praktische Übung am realen Projekt


Künstliche Intelligenz (KI) im Arbeitsprozess

Vorstellung von konkreten KI‐Technologien

sowie Anwendungsmöglichkeiten im beruflichen Umfeld


Projektarbeit (ca. 1 Tag)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse

Machine Learning

Einführung in Machine Learning (ca. 5 Tage)

Warum Machine Learning?

Anwendungsbeispiele

Überwachtes Lernen, Unüberwachtes Lernen, Teilüberwachtes Lernen, Reinforcement Lernen

Beispiele für Datenbestände

Daten kennenlernen

Trainings-, Validierungs- und Testdaten

Daten sichten

Vorhersagen treffen


Überwachtes Lernen (ca. 5 Tage)

Klassifikation und Regression

Verallgemeinerung, Overfitting und Underfitting

Größe des Datensatzes

Algorithmen zum überwachten Lernen

Lineare Modelle

Bayes-Klassifikatoren

Entscheidungsbäume

Random Forest

Gradient Boosting

k-nächste-Nachbarn

Support Vector Machines

Conditional Random Field

Neuronale Netze und Deep Learning

Wahrscheinlichkeiten


Unüberwachtes Lernen (ca. 5 Tage)

Arten unüberwachten Lernens

Vorverarbeiten und Skalieren

Datentransformationen

Trainings- und Testdaten skalieren

Dimensionsreduktion

Feature Engineering

Manifold Learning

Hauptkomponentenzerlegung (PCA)

Nicht-negative-Matrix-Faktorisierung (NMF)

Manifold Learning mit t-SNE

Clusteranalyse

k-Means-Clustering

Agglomeratives Clustering

Hierarchische Clusteranalyse

DBSCAN

Clusteralgorithmen


Evaluierung und Verbesserung (ca. 2 Tage)

Modellauswahl und Modellevaluation

Abstimmung der Hyperparameter eines Schätzers

Kreuzvalidierung

Gittersuche

Evaluationsmetriken

Klassifikation


Projektarbeit (ca. 3 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse

Deep Learning

Einführung Deep Learning (ca. 1 Tag)

Deep Learning als eine Art von Machine Learning


Grundlagen in neuronalen Netzen (ca. 4 Tage)

Perceptron

Berechnung neuronaler Netze

Optimierung der Modellparameter, Backpropagation

Deep‐Learning‐Bibliotheken

Regression vs. Klassifikation

Lernkurven, Überanpassung und Regularisierung

Hyperparameteroptimierung

Stochastischer Gradientenabstieg (SGD)

Momentum, Adam Optimizer

Lernrate


Convolutional Neural Network (CNN) (ca. 2 Tage)

Bildklassifizierung

Convolutional‐Schichten, Pooling‐Schichten

Reshaping‐Schichten, Flatten, Global‐Average‐Pooling

CNN‐Architekturen ImageNet‐Competition

Tiefe neuronale Netze, Vanishing Gradients, Skip‐Verbindungen, Batch‐Normalization


Transfer Learning (ca. 1 Tag)

Anpassen von Modellen

Unüberwachtes Vortrainieren

Image‐Data‐Augmentation, Explainable AI


Regional CNN (ca. 1 Tag)

Objektlokalisierung

Regressionsprobleme

Verzweigte neuronale Netze


Methoden der kreativen Bilderzeugung (ca. 1 Tag)

Generative Adversarial Networks (GAN)

Deepfakes

Diffusionsmodelle


Recurrente neurale Netze (ca. 2 Tage)

Sequenzanalyse

Rekurrente Schichten

Backpropagation through time (BPTT)

Analyse von Zeitreihen

Exploding und Vanishing Gradient Probleme

LSTM (Long Short‐Term Memory)

GRU (Gated Recurrent Unit)

Deep RNN

Deep LSTM


Textverarbeitung durch neuronale Netze (ca. 2 Tage)

Text‐Preprocessing

Embedding‐Schichten

Text‐Klassifizierung

Sentimentanalyse

Transfer‐Learning in NLP

Übersetzungen

Seqence‐to‐Sequence‐Verfahren, Encoder‐Decoder‐Architektur


Sprachmodelle (ca. 1 Tag)

BERT, GPT

Attention‐Schichten, Transformers

Textgeneration‐Pipelines

Summarization

Chatbots


Deep Reinforcement Learning (ca. 1 Tag)

Steuerung dynamischer Systeme

Agentensysteme

Training durch Belohnungen

Policy Gradients

Deep‐Q‐Learning


Bayes'sche neuronale Netze (ca. 1 Tag)

Unsicherheiten in neuronalen Netzen

Statistische Bewertung von Prognosen

Konfidenz, Standardabweichung

Unbalancierte Daten

Sampling‐Methoden


Projektarbeit (ca. 3 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse



Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.

Die Programmiersprache Python wird vorausgesetzt, Vorkenntnisse im Bereich Data Analytics werden empfohlen.

Nach dem Lehrgang besitzt du relevante Kenntnisse im Thema Machine Learning. Du kennst die wichtigsten Gründe für die Verwendung des Machine Learning, Anwendungsgebiete sowie die verschiedenen Kategorien und Konzepte des Maschinellen Lernens. Mit Kenntnissen in der Evaluierung und der Verbesserung rundest du dein Wissen ab.

Ebenso kennst du die Einsatzbereiche von Deep Learning und die Funktionsweisen neuronaler Netzwerke. Du verstehst, wie neuronale Netze Objekte in Bildern erkennen können, und bist in der Lage, maschinelles Lernen bereitzustellen und Prozesse zu dokumentieren.

Zusätzlich vermittelt der Kurs den Ansatz des Design-Thinking, mit dem sich innovative Lösungen für komplexe Probleme erarbeiten lassen. Das Vorgehen bei Design-Thinking ist klar strukturiert, iterativ und lässt viel Raum für neue Sichtweisen. Der Lehrgang vermittelt Sinn, Ablauf und Grundsätze der Methode.

Informatiker:innen, Mathematiker:innen, Elektrotechniker:innen sowie Personen mit Studium der (Wirtschafts-)Ingenieurwissenschaften

Machine Learning kommt in zahlreichen Anwendungsgebieten zum Einsatz: Die selbstständige Entwicklung geeigneter Spamfilter für das Internet, die Erstellung präziser Prognosen über Lagerbestände im Bereich Supply Chain Management oder die Entwicklung von Kaufprognosen für einzelne Kundschaft bzw. Kundensegmente im Marketing. Mitarbeiter:innen, die im Fachbereich Machine Learning qualifiziert sind, können branchenübergreifend eingesetzt werden und sind am Arbeitsmarkt entsprechend vielfach nachgefragt.

Mit Deep Learning lassen sich große Datenmengen nach Mustern und Modellen untersuchen. Deshalb kommt es im Rahmen künstlicher Intelligenz häufig für die Gesichts-, Objekt- oder Spracherkennung zum Einsatz, so z. B. bei der medizinischen Bilderkennung, Text- und Spracherkennung im Vertrieb, bei der IT-Datensicherheit oder beim Monitoring von Finanztransaktionen. Fachkräfte mit diesem Wissen können daher vielseitig eingesetzt werden und sind am Arbeitsmarkt entsprechend nachgefragt.

Im Ansatz war Design Thinking eine innovative Methode zur Produktentwicklung, der sich aber mittlerweile auf die gesamte Unternehmenskultur ausgeweitet hat und somit branchenübergreifend gefragt ist.

Dein aussagekräftiges Zertifikat gibt detaillierten Einblick in deine erworbenen Qualifikationen und verbessert deine beruflichen Chancen.

Didaktisches Konzept

Deine Dozierenden sind sowohl fachlich als auch didaktisch hoch qualifiziert und werden dich vom ersten bis zum letzten Tag unterrichten (kein Selbstlernsystem).

Du lernst in effektiven Kleingruppen. Die Kurse bestehen in der Regel aus 6 bis 25 Teilnehmenden. Der allgemeine Unterricht wird in allen Kursmodulen durch zahlreiche praxisbezogene Übungen ergänzt. Die Übungsphase ist ein wichtiger Bestandteil des Unterrichts, denn in dieser Zeit verarbeitest du das neu Erlernte und erlangst Sicherheit und Routine in der Anwendung. Im letzten Abschnitt des Lehrgangs findet eine Projektarbeit, eine Fallstudie oder eine Abschlussprüfung statt.

 

Virtueller Klassenraum alfaview®

Der Unterricht findet über die moderne Videotechnik alfaview® statt  - entweder bequem von zu Hause oder bei uns im Bildungszentrum. Über alfaview® kann sich der gesamte Kurs face-to-face sehen, in lippensynchroner Sprachqualität miteinander kommunizieren und an gemeinsamen Projekten arbeiten. Du kannst selbstverständlich auch deine zugeschalteten Trainer:innen jederzeit live sehen, mit diesen sprechen und du wirst während der gesamten Kursdauer von deinen Dozierenden in Echtzeit unterrichtet. Der Unterricht ist kein E-Learning, sondern echter Live-Präsenzunterricht über Videotechnik.

 

Alle Lehrgänge werden von der Agentur für Arbeit gefördert und sind nach der Zulassungsverordnung AZAV zertifiziert. Bei der Einreichung eines Bildungsgutscheines oder eines  Aktivierungs- und Vermittlungsgutscheines werden in der Regel die gesamten Lehrgangskosten von Ihrer Förderstelle übernommen.
Eine Förderung ist auch über den Europäischen Sozialfonds (ESF), die Deutsche Rentenversicherung (DRV) oder über regionale Förderprogramme möglich. Als Zeitsoldat:in besteht die Möglichkeit, Weiterbildungen über den Berufsförderungsdienst (BFD) zu besuchen. Auch Firmen können ihre Mitarbeiter:innen über eine Förderung der Agentur für Arbeit (Qualifizierungschancengesetz) qualifizieren lassen.

Gerne beraten wir dich kostenfrei. 0800 5770577 Mo. - Fr. von 8 bis 17 Uhr
kostenfrei aus allen deutschen Netzen.
Kontakt
Gerne beraten wir dich kostenfrei. 0800 5770577 Mo. - Fr. von 8 bis 17 Uhr kostenfrei aus allen deutschen Netzen.