Machine Learning Entwickler:in mit berufsbezogener Deutschförderung

Kostenfrei für Dich

durch Förderung

Der Lehrgang vermittelt zunächst die theoretischen Inhalte aus den gängigsten Wirtschaftsfeldern unter Einbeziehung einer berufsbezogenen Deutschförderung. Danach erwirbst du Wissen in der Datenanalyse und -visualisierung sowie im Datenmanagement. Du lernst wichtige Kenntnisse zum Thema Machine Learning. Abschließend erlernst du die Einsatzbereiche von Deep Learning und die Funktionsweisen neuronaler Netzwerke.
  • Abschlussart: Zertifikat „Berufsbezogene Deutschförderung für den kaufmännischen/technischen Bereich“
    Zertifikat „Machine Learning Entwickler:in“
  • Zusatzqualifikationen: Zertifikat „Data Analytics“
    Zertifikat „Machine Learning“
    Zertifikat „Deep Learning“
  • Abschlussprüfung: Praxisbezogene Projektarbeiten mit Abschlusspräsentationen
    Zertifizierungsprüfung Berufsbezogene Deutschförderung
  • Unterrichtszeiten: Vollzeit
    Montag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
  • Dauer: 20 Wochen

Berufsbezogene Deutschförderung für den kaufmännischen/technischen Bereich

Allgemeine Sprachkompetenzen (ca. 1 Tag)

Wiederholung wichtiger Grammatikthemen und Anwendung von komplexen sprachlichen Strukturen der deutschen Grammatik

Texte aus unterschiedlichen Bereichen lesen und verstehen, globales und selektives Leseverstehen

Verbesserung des Hörverstehens


Korrespondenz im beruflichen Umfeld (ca. 2 Tage)

Layout und Briefgestaltung

Zeitgemäße Anreden und Briefeinstiege

Kundenorientierte Briefe und E‐Mails

Berichtswesen

Bewerbungsanschreiben nach DIN 5008


Künstliche Intelligenz (KI) im Arbeitsprozess

Vorstellung von konkreten KI‐Technologien

sowie Anwendungsmöglichkeiten im beruflichen Umfeld


Berufsfeld Kommunikationsmanagement (ca. 3 Tage)

Souveräne Kommunikation im Unternehmen

Kommunikationsformen in Teams

Besprechungen und Präsentationen

Konfliktmanagement

Mitarbeitergespräche

Vorstellungsgespräche

Verkaufs‐ und Beratungsgespräche

Angebote verfassen

Messen und Produktpräsentationen

Reklamationen


Berufsfeld Wirtschaft (ca. 6 Tage)

Personal, Management und Arbeitsrecht

Finanzwesen und Controlling

Lohn‐ und Gehaltsabrechnung


Berufsfeld Marketing (ca. 6 Tage)

Werbung

Marktanalyse und Marktforschung

Online‐Marketing und E‐Commerce


Unternehmensprozesse (ca. 9 Tage)

Umstrukturierungen, Prozessmanagement, Prozessveränderungen

Digitale Transformation

Veränderungen im Energiemanagement und Umweltschutz

Projektmanagement


Berufsfeld Logistik und Handel (ca. 8 Tage)

Produktion

Einkauf

Lieferung und Transport

Einzelhandel


Projektarbeit, Zertifizierungsvorbereitung und Zertifizierungsprüfung (ca. 5 Tage)

Data Analytics

Einführung Datenanalyse (ca. 1 Tag)

CRISP-DM Referenzmodell

Data Analytics Workflows

Begriffsabgrenzung Künstliche Intelligenz, Machine Learning, Deep Learning

Anforderungen und Rolle im Unternehmen der Data Engineers, Data Scientists und Data Analysts


Wiederholung Grundlagen Python (ca. 1 Tag)

Datentypen

Funktionen


Datenanalyse (ca. 3 Tage)

Zentrale Python-Module im Kontext Data Analytics (NumPy, Pandas)

Prozess der Datenaufbereitung

Data Mining Algorithmen in Python


Künstliche Intelligenz (KI) im Arbeitsprozess

Vorstellung von konkreten KI‐Technologien

sowie Anwendungsmöglichkeiten im beruflichen Umfeld


Datenvisualisierung (ca. 3 Tage)

Explorative Datenanalyse

Insights

Datenqualität

Nutzenanalyse

Visualisierung mit Python: Matplotlib, Seaborn, Plotly Express

Data Storytelling


Datenmanagement (ca. 2 Tage)

Big Data Architekturen

Relationale Datenbanken mit SQL

Vergleich von SQL- und NoSQL-Datenbanken

Business Intelligence

Datenschutz im Kontext der Datenanalyse


Datenanalyse im Big Data Kontext (ca. 1 Tag)

MapReduce-Ansatz

Spark

NoSQL


Dashboards (ca. 3 Tage)

Bibliothek: Dash

Aufbau von Dashboards – Dash Components

Customizing von Dashboards

Callbacks


Text Mining (ca. 1 Tag)

Data Preprocessing

Visualisierung

Bibliothek: SpaCy


Projektarbeit (ca. 5 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse

Machine Learning

Einführung in Machine Learning (ca. 5 Tage)

Warum Machine Learning?

Anwendungsbeispiele

Überwachtes Lernen, Unüberwachtes Lernen, Teilüberwachtes Lernen, Reinforcement Lernen

Beispiele für Datenbestände

Daten kennenlernen

Trainings-, Validierungs- und Testdaten

Daten sichten

Vorhersagen treffen


Überwachtes Lernen (ca. 5 Tage)

Klassifikation und Regression

Verallgemeinerung, Overfitting und Underfitting

Größe des Datensatzes

Algorithmen zum überwachten Lernen

Lineare Modelle

Bayes-Klassifikatoren

Entscheidungsbäume

Random Forest

Gradient Boosting

k-nächste-Nachbarn

Support Vector Machines

Conditional Random Field

Neuronale Netze und Deep Learning

Wahrscheinlichkeiten


Unüberwachtes Lernen (ca. 5 Tage)

Arten unüberwachten Lernens

Vorverarbeiten und Skalieren

Datentransformationen

Trainings- und Testdaten skalieren

Dimensionsreduktion

Feature Engineering

Manifold Learning

Hauptkomponentenzerlegung (PCA)

Nicht-negative-Matrix-Faktorisierung (NMF)

Manifold Learning mit t-SNE

Clusteranalyse

k-Means-Clustering

Agglomeratives Clustering

Hierarchische Clusteranalyse

DBSCAN

Clusteralgorithmen


Evaluierung und Verbesserung (ca. 2 Tage)

Modellauswahl und Modellevaluation

Abstimmung der Hyperparameter eines Schätzers

Kreuzvalidierung

Gittersuche

Evaluationsmetriken

Klassifikation


Projektarbeit (ca. 3 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse

Deep Learning

Einführung Deep Learning (ca. 1 Tag)

Deep Learning als eine Art von Machine Learning


Grundlagen in neuronalen Netzen (ca. 4 Tage)

Perceptron

Berechnung neuronaler Netze

Optimierung der Modellparameter, Backpropagation

Deep‐Learning‐Bibliotheken

Regression vs. Klassifikation

Lernkurven, Überanpassung und Regularisierung

Hyperparameteroptimierung

Stochastischer Gradientenabstieg (SGD)

Momentum, Adam Optimizer

Lernrate


Convolutional Neural Network (CNN) (ca. 2 Tage)

Bildklassifizierung

Convolutional‐Schichten, Pooling‐Schichten

Reshaping‐Schichten, Flatten, Global‐Average‐Pooling

CNN‐Architekturen ImageNet‐Competition

Tiefe neuronale Netze, Vanishing Gradients, Skip‐Verbindungen, Batch‐Normalization


Transfer Learning (ca. 1 Tag)

Anpassen von Modellen

Unüberwachtes Vortrainieren

Image‐Data‐Augmentation, Explainable AI


Regional CNN (ca. 1 Tag)

Objektlokalisierung

Regressionsprobleme

Verzweigte neuronale Netze


Methoden der kreativen Bilderzeugung (ca. 1 Tag)

Generative Adversarial Networks (GAN)

Deepfakes

Diffusionsmodelle


Recurrente neurale Netze (ca. 2 Tage)

Sequenzanalyse

Rekurrente Schichten

Backpropagation through time (BPTT)

Analyse von Zeitreihen

Exploding und Vanishing Gradient Probleme

LSTM (Long Short‐Term Memory)

GRU (Gated Recurrent Unit)

Deep RNN

Deep LSTM


Textverarbeitung durch neuronale Netze (ca. 2 Tage)

Text‐Preprocessing

Embedding‐Schichten

Text‐Klassifizierung

Sentimentanalyse

Transfer‐Learning in NLP

Übersetzungen

Seqence‐to‐Sequence‐Verfahren, Encoder‐Decoder‐Architektur


Sprachmodelle (ca. 1 Tag)

BERT, GPT

Attention‐Schichten, Transformers

Textgeneration‐Pipelines

Summarization

Chatbots


Deep Reinforcement Learning (ca. 1 Tag)

Steuerung dynamischer Systeme

Agentensysteme

Training durch Belohnungen

Policy Gradients

Deep‐Q‐Learning


Bayes'sche neuronale Netze (ca. 1 Tag)

Unsicherheiten in neuronalen Netzen

Statistische Bewertung von Prognosen

Konfidenz, Standardabweichung

Unbalancierte Daten

Sampling‐Methoden


Projektarbeit (ca. 3 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse



Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.

Voraussetzung für die Kursteilnahme sind allgemeine Deutschkenntnisse (B1) sowie die Programmiersprache Python und Erfahrungen mit Datenbanken (SQL).

Nach dem Lehrgang besitzt du Wissen in der Datenanalyse und -visualisierung sowie im Datenmanagement. Du kennst die wichtigsten Gründe für die Verwendung des Machine Learning, Anwendungsgebiete sowie die verschiedenen Kategorien und Konzepte des Maschinellen Lernens. Außerdem kennst du die Einsatzbereiche von Deep Learning und die Funktionsweisen neuronaler Netzwerke. Du verstehst, wie neuronale Netze Objekte in Bildern erkennen können, und bist in der Lage, maschinelles Lernen bereitzustellen und Prozesse zu dokumentieren.

Zudem beinhaltet der Kurs eine berufsbezogene Deutschförderung. Hier lernst du, geschäftliche Korrespondenz nach aktuellen Regelwerken aufzusetzen und souveräne Unternehmenskommunikation intern sowie extern zu führen. Die theoretischen Inhalte aus den gängigsten Wirtschaftsfeldern werden durch sprachliche Anteile ergänzt, um eine Integration in den deutschen Arbeitsmarkt zu gewährleisten.

Informatiker:innen, Mathematiker:innen, Elektrotechniker:innen sowie Personen mit Studium der (Wirtschafts-)Ingenieurwissenschaften

Der Lehrgang richtet sich zudem an Fachkräfte aus dem kaufmännischen und technischen Bereich unter Berücksichtigung eines integrativen Anteils.

Machine Learning kommt in zahlreichen Anwendungsgebieten zum Einsatz: Die selbstständige Entwicklung geeigneter Spamfilter für das Internet, die Erstellung präziser Prognosen über Lagerbestände im Bereich Supply Chain Management oder die Entwicklung von Kaufprognosen für einzelne Kundschaft bzw. Kundensegmente im Marketing. Mitarbeiter:innen, die im Fachbereich Machine Learning qualifiziert sind, können branchenübergreifend eingesetzt werden und sind am Arbeitsmarkt entsprechend vielfach nachgefragt.

Außerdem ermöglicht dir der Kurs eine berufsbezogene Deutschförderung, um geschäftliche Korrespondenz gemäß aktuellen Regelwerken zu verfassen und eine souveräne Unternehmenskommunikation sowohl intern als auch extern zu führen.

Dein aussagekräftiges Zertifikat gibt detaillierten Einblick in deine erworbenen Qualifikationen und verbessert deine beruflichen Chancen.

Didaktisches Konzept

Deine Dozierenden sind sowohl fachlich als auch didaktisch hoch qualifiziert und werden dich vom ersten bis zum letzten Tag unterrichten (kein Selbstlernsystem).

Du lernst in effektiven Kleingruppen. Die Kurse bestehen in der Regel aus 6 bis 25 Teilnehmenden. Der allgemeine Unterricht wird in allen Kursmodulen durch zahlreiche praxisbezogene Übungen ergänzt. Die Übungsphase ist ein wichtiger Bestandteil des Unterrichts, denn in dieser Zeit verarbeitest du das neu Erlernte und erlangst Sicherheit und Routine in der Anwendung. Im letzten Abschnitt des Lehrgangs findet eine Projektarbeit, eine Fallstudie oder eine Abschlussprüfung statt.

 

Virtueller Klassenraum alfaview®

Der Unterricht findet über die moderne Videotechnik alfaview® statt  - entweder bequem von zu Hause oder bei uns im Bildungszentrum. Über alfaview® kann sich der gesamte Kurs face-to-face sehen, in lippensynchroner Sprachqualität miteinander kommunizieren und an gemeinsamen Projekten arbeiten. Du kannst selbstverständlich auch deine zugeschalteten Trainer:innen jederzeit live sehen, mit diesen sprechen und du wirst während der gesamten Kursdauer von deinen Dozierenden in Echtzeit unterrichtet. Der Unterricht ist kein E-Learning, sondern echter Live-Präsenzunterricht über Videotechnik.

 

Alle Lehrgänge werden von der Agentur für Arbeit gefördert und sind nach der Zulassungsverordnung AZAV zertifiziert. Bei der Einreichung eines Bildungsgutscheines oder eines  Aktivierungs- und Vermittlungsgutscheines werden in der Regel die gesamten Lehrgangskosten von Ihrer Förderstelle übernommen.
Eine Förderung ist auch über den Europäischen Sozialfonds (ESF), die Deutsche Rentenversicherung (DRV) oder über regionale Förderprogramme möglich. Als Zeitsoldat:in besteht die Möglichkeit, Weiterbildungen über den Berufsförderungsdienst (BFD) zu besuchen. Auch Firmen können ihre Mitarbeiter:innen über eine Förderung der Agentur für Arbeit (Qualifizierungschancengesetz) qualifizieren lassen.

Gerne beraten wir dich kostenfrei. 0800 5770577 Mo. - Fr. von 8 bis 17 Uhr
kostenfrei aus allen deutschen Netzen.
Kontakt
Gerne beraten wir dich kostenfrei. 0800 5770577 Mo. - Fr. von 8 bis 17 Uhr kostenfrei aus allen deutschen Netzen.