-
Abschlussart: Zertifikat „MATLAB und Simulink“
Zertifikat „Statistik“ -
Abschlussprüfung: Praxisbezogene Projektarbeiten mit Abschlusspräsentationen
-
Unterrichtszeiten: VollzeitMontag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
-
Dauer: 8 Wochen
Mathematische Modellierung mit MATLAB und Simulink
Grundlagen MATLAB (ca. 2 Tage)
MATLAB-Oberfläche
Auslesen von Daten aus einer Datei
Variablen, Arrays, Operatoren, Grundfunktionen
Grafische Darstellung von Daten
Anpassen von Diagrammen
Exportieren von Grafiken
Variablen und Befehle (ca. 2 Tage)
Relationale und logische Operatoren
Mengen, Mengen bei 2D-Körpern (Polyshape)
Durchführung mathematischer und statistischer Berechnungen mit Vektoren
Grafiken in der Statistik
Analyse und Visualisierung (ca. 1 Tag)
Erstellen und Verändern von Matrizen
Mathematische Operationen mit Matrizen
Grafische Darstellung von Matrixdaten
Matrixanwendungen: Abbildungen, Rotation, Lineare Gleichungssysteme, Least Square Verfahren
Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld
Datenverarbeitung (ca. 1 Tag)
Datentypen: Structure Arrays, Cell Arrays, String vs. Char, Categorical, Datetime u. v. m.
Anlegen und Organisieren tabellarischer Daten
Bedingte Datenauswahl
Importieren/Exportieren mit Matlab: Ordnerstrukturen, .mat-Daten, Tabellendaten, Fließtexte
MATLAB-Programmierung (ca. 3 Tage)
Kontrollstrukturen: Schleifen, if-else, Exceptions
Funktionen
Objektorientierte Programmierung
App Design
Simulation in MATLAB (ca. 5 Tage)
Numerische Integration und Differenziation
Grundlagen der Simulation gewöhnlicher Differentialgleichungen, Matlab ODE und Solveroptionen
Simulationstechnik in Matlab: Eingabeparameter, Dateninterpolation, Simulationsstudien
Simulationssteuerung: Eventfunctions (Zero Crossing), Outputfunctions
Anwendungsbeispiele, z. B. Simulation eines Elektromotors, Simulation einer Rakete
Simulink (ca. 4 Tage)
Grundlagen in Simulink: Schaubilder, Funktionen, Signale und Differentialgleichungen
Funktionen, Subsysteme und Bibliotheken
Import/Export, Lookup-Tabellen, Regelung
Zero-Crossing, Automatisierung von Simulationsaufgaben (Matlab Zugriff)
Anwendungsbeispiele, z. B. Simulation eines Flugzeugtriebstrangs
Projektarbeit (ca. 2 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Statistik
Statistische Grundlagen (ca. 6 Tage)
Messtheoretische Grundlagen (Grundgesamtheit und Stichprobe, Stichprobenarten, Messung und Skalenniveaus)
Univariate Deskriptivstatistik (Häufigkeitsverteilungen, Zentralmaße, Streuungsmaße, Standardwert, Histogramme, Balkendiagramme, Kreisdiagramme, Liniendiagramme und Boxplots)
Bivariate Deskriptivstatistik (Zusammenhangsmaße, Korrelationskoeffizienten, Kreuztabellen, Streudiagramme und gruppierte Balkendiagramme)
Grundlagen der induktiven Inferenzstatistik (Wahrscheinlichkeitsverteilung, Normalverteilung, Mittelwerteverteilung, Signifikanztest, Nullhypothesentest nach Fisher, Effektgröße, Parameterschätzung, Konfidenzintervalle, Fehlerbalkendiagramme, Poweranalysen und Ermittlung des optimalen Stichprobenumfangs)
Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld
Methoden zum Vergleich von zwei Gruppen (ca. 5 Tage)
z- und t-Test für eine Stichprobe (Abweichung von einem vorgegebenen Wert)
t-Test für den Mittelwertsunterschied von zwei unabhängigen/verbundenen Stichproben
Prüfung der Wirksamkeit von Aktionen, Maßnahmen, Interventionen und anderen Veränderungen mit t-Tests (Pretest-Posttest-Designs mit zwei Gruppen)
Unterstützende Signifikanztests (Anderson-Darling-Test, Ryan-Joiner-Test, Levene-Test, Bonnet-Test, Signifikanztest für Korrelationen)
Nonparametrische Verfahren (Wilcoxon-Test, Vorzeichentest, Mann-Whitney-Test)
Kontingenzanalysen (Binomialtest, Exakter Test nach Fisher, Chi-Quadrat-Test, Kreuztabellen mit Assoziationsmaße)
Methoden zum Mittelwertvergleich von mehreren Gruppen (ca. 5 Tage)
Ein- und zweifaktorielle Varianzanalyse (einfache und balancierte ANOVA)
Mehrfaktorielle Varianzanalyse (Allgemeines lineares Modell)
Feste, zufällige, gekreuzte und geschachtelte Faktoren
Mehrfachvergleichsverfahren (Tukey-HSD, Dunnett, Hsu-MCB, Games-Howell)
Interaktionsanalyse (Analyse von Wechselwirkungseffekten)
Trennschärfe und Poweranalyse bei Varianzanalysen
Einführung in die Versuchsplanung (DoE, Design of Experiments) (ca. 1 Tag)
Voll- und teilfaktorielle Versuchspläne
Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.
Nach diesem Lehrgang hast du das nötige Fachwissen und kennst die spezifische Terminologie zur mathematischen Modellierung mit MATLAB und Simulink. Du beherrschst die Werkzeuge der MATLAB-Software und die Programmiersprache MATLAB. Des Weiteren ist dir die Modellierung von numerischen Systemen mit der Software Simulink bekannt.
Des Weiteren verstehst du die Grundlagen der Statistik, kannst Daten aufbereiten, auswerten sowie statistische Datenanalysen und Ergebnisse mit Grafiken darstellen, erläutern und interpretieren.
Der Kurs richtet sich an Mathematiker:innen, Naturwissenschaftler:innen und an Personen mit Studium der Ingenieurwissenschaften.
Du erlernst mit MATLAB und Simulink mathematische Standard-Programme für das Ingenieurwesen und die Naturwissenschaft. Fachkräfte mit Kenntnissen in der Datensimulation sind in zahlreichen Industriefeldern nachgefragt und können beispielsweise in der Wetter- und Klimaforschung, bei der Modellierung des Energieverbrauchs, der Entwicklung von Steueralgorithmen für Fluggeräte oder der Funktionsentwicklung im Bereich Automotive eingesetzt werden.
Dein aussagekräftiges Zertifikat gibt detaillierten Einblick in deine erworbenen Qualifikationen und verbessert deine beruflichen Chancen.
Didaktisches Konzept
Deine Dozierenden sind sowohl fachlich als auch didaktisch hoch qualifiziert und werden dich vom ersten bis zum letzten Tag unterrichten (kein Selbstlernsystem).
Du lernst in effektiven Kleingruppen. Die Kurse bestehen in der Regel aus 6 bis 25 Teilnehmenden. Der allgemeine Unterricht wird in allen Kursmodulen durch zahlreiche praxisbezogene Übungen ergänzt. Die Übungsphase ist ein wichtiger Bestandteil des Unterrichts, denn in dieser Zeit verarbeitest du das neu Erlernte und erlangst Sicherheit und Routine in der Anwendung. Im letzten Abschnitt des Lehrgangs findet eine Projektarbeit, eine Fallstudie oder eine Abschlussprüfung statt.
Virtueller Klassenraum alfaview®
Der Unterricht findet über die moderne Videotechnik alfaview® statt - entweder bequem von zu Hause oder bei uns im Bildungszentrum. Über alfaview® kann sich der gesamte Kurs face-to-face sehen, in lippensynchroner Sprachqualität miteinander kommunizieren und an gemeinsamen Projekten arbeiten. Du kannst selbstverständlich auch deine zugeschalteten Trainer:innen jederzeit live sehen, mit diesen sprechen und du wirst während der gesamten Kursdauer von deinen Dozierenden in Echtzeit unterrichtet. Der Unterricht ist kein E-Learning, sondern echter Live-Präsenzunterricht über Videotechnik.
Alle Lehrgänge werden von der Agentur für Arbeit gefördert und sind nach der Zulassungsverordnung AZAV zertifiziert. Bei der Einreichung eines Bildungsgutscheines oder eines Aktivierungs- und Vermittlungsgutscheines werden in der Regel die gesamten Lehrgangskosten von Ihrer Förderstelle übernommen.
Eine Förderung ist auch über den Europäischen Sozialfonds (ESF), die Deutsche Rentenversicherung (DRV) oder über regionale Förderprogramme möglich. Als Zeitsoldat:in besteht die Möglichkeit, Weiterbildungen über den Berufsförderungsdienst (BFD) zu besuchen. Auch Firmen können ihre Mitarbeiter:innen über eine Förderung der Agentur für Arbeit (Qualifizierungschancengesetz) qualifizieren lassen.